197 Au Mössbauer Spectroscopic Study of the Ternary Systems (Ag,Au) $_2$ X (X=S and Se) Hiroshi SAKAI,* Manabu ANDO, Sumio ICHIBA, and Yutaka MAEDA[†] Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730 [†]Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-04 197 Au Mössbauer spectroscopy has been applied for the low-temperature β -phases of ternary systems, ${\rm Ag_{2-X}Au_{X}X}$ (X=S, and Se; x=0.2 and 0.5). The nature of linear X-Au-X bonds present in these systems is discussed on the basis of the Mössbauer data and the bond distances. The silver chalcogenides, Ag_2X (X=S,Se, and Te), have been extensively studied because of their interesting phase-transition phenomena and electrical properties. The Ag^+ ions are statistically distributed over the cation sites in the three-dimensional frameworks of X^{2^-} ions in the high-temperature α -phases of these compounds. In the silver-gold-chalcogen ternary systems, $(Ag_1Au)_2X$ (X=S, Se, and Te), stoichiometric compounds, Ag_3AuS_2 , AgAuS, Ag_3AuSe_2 , and Ag_3AuTe_2 , are known to exist as the stable compounds at room temperature. These compounds transform to the high-temperature α -phase of the cubic structure, similar to the binary systems Ag_2X . In order to elucidate the charge density and the bond nature of the cation, the 197Au Mössbauer spectroscopy has been first applied for the ternary systems $(Ag_1Au)_2X$ (X=S and Se). Powder samples of $Ag_{2-X}Au_{X}X$ (X=S and Se; x=0.2 and 0.5) were prepared by heating the appropriate stoichiometric quantities of the elements in an evacuated quartz tube at 700 °C for 24 h. All products were identified by X-ray powder diffraction (XRD) using graphite monochromated Cu-K α radiation, and characterized by differential thermal analysis (DTA) and differential scanning calorimetry (DSC). 197Au Mössbauer spectra were measured by cooling a 197Pt source and an absorber at 16 K. The 197Pt source was prepared by neutron-irradiation of a 140 mg 196Pt metal (98% enriched) at a fluence rate of 2 × 10¹³ cm⁻²s⁻¹ for 1 h in Kyoto University Reactor (KUR). The 77.3 keV Mössbauer γ -ray was detected with a 5 mm-thick NaI(T1) scintillation counter. The velocity calibration was performed with an $\alpha\mbox{-}\mbox{Fe}$ spectrum. Figure 1(a) and (b) shows typical XRD patterns for the low-temperature β phase (measured at room temperature) and the high-temperature α -phase (at 210 °C) of Ag_3AuS_2 . The pattern of the β -phase is well assigned to a tetragonal unit cell with a lattice parameter a=9.75 Å, c=9.85 Å, while that of the $\alpha\text{-phase}$ is indexed in a simple cubic a=4.93 Å. The results well agree with those reported by $Graf^{2}$ and Folmer et al.³) The XRD pattern at room temperature of $Ag_{1.8}Au_{0.2}S$ suggests that the β -phase consists of a mixture of AgaAuS2 and Fig. 1. XRD patterns of $Ag_3^{AuS}_2$; a) β -phase and b) α -phase. Ag₂S. In the α -phase measured at 130 °C, however, the pattern is assigned to a single phase of a body-centered cubic a=4.89 Å. The phase-transition phenomena of selenides, Ag₃AuSe₂ and Ag_{1.8}Au_{0.2}Se, are quite similar to those of the sulfides, in good agreement with the results reported by Messien and Baiwir⁴) and Wiegers.⁵) 197 Au Mössbauer spectra at 16 K for the β -phases of ${ m Ag_{2-X}Au_{X}S}$ (x=0.2 and 0.5) are shown in Fig. 2. The spectra were analyzed with a quadrupole doublet by the least-squares method. The values of the isomer shift (I.S.) relative to the Pt source, the quadrupole splitting (Q.S.), and the line width (Γ) obtained by the best-fitting are given in Table 1. The I.S. and Q.S. values of Ag_{1.8}Au_{0.2}S are close to those of Ag₃AuS₂, suggesting that the charge state and the coordination of the Au atoms in Ag_{1.8}Au_{0.2}S are similar to those in Ag3AuS2. This is consistent with the results of the XRD patterns; $Ag_{1.8}Au_{0.2}S$ is a mixture of Ag_3AuS_2 and Ag_2S . In Fig. 3 and Table 1, Mössbauer spectra at 16 K and Mössbauer parameters for the β -phases of $Ag_{2-x}Au_xSe$ (x=0.2 and 0.5) are given. The similar I.S. and Q.S. values between $Ag_{1.8}Au_{0.2}Se$ and Ag_3AuSe_2 suggest that $Ag_{1.8}Au_{0.2}Se$ is a mixture of Ag₃AuSe₂ and Ag₂Se. It is apparent from the values of I.S. and Q.S. that the gold atoms exist as monovalent cations in the sulfides and the selenides. The crystal structures of the β -phases of Ag₃AuS₂ and Ag₃AuSe₂ have Fig. 2. $^{197}{\rm Au~M\ddot{o}ssbauer~spectra~at~16~K}$ of a) ${\rm Ag}_{1.8}{\rm Au}_{0.2}{\rm S}$ and b) ${\rm Ag}_3{\rm AuS}_2$ • Fig. 3. ¹⁹⁷Au Mössbauer spectra at 16 K of a) Ag_{1.8}Au_{0.2}Se and b) Ag₃AuSe₂. Table.1 Mössbauer data at 16 K of sulfides and selenides | Samples | I.S.a) | Q.S.
mm s ⁻¹ | $\frac{\Gamma}{\text{mm s}^{-1}}$ | |--|---|--|---| | Ag _{1.8} Au _{0.2} S
Ag ₃ AuS ₂
Ag _{1.8} Au _{0.2} Se
Ag ₃ AuSe ₂ | 1.65 ± 0.05 1.56 ± 0.05 1.28 ± 0.05 1.25 ± 0.05 | 5.43 ± 0.05
5.38 ± 0.05
4.99 ± 0.05
5.00 ± 0.05 | 2.12 ± 0.08 1.95 ± 0.08 2.06 ± 0.08 1.94 ± 0.08 | a) The I.S. values are relative to the Pt source. determined by Messien et al.⁶⁾ and Messien and Baiwir.⁴⁾ The crystallographic data suggest that the anion packings are approximately body-centered, the silver atoms are coordinated by four chalcogen atoms, and the gold atoms are linearly coordinated by two chalcogen atoms. The linear coordination is observed for a large number of Au(I) compounds. The linear S-Au-S bond in β -Ag₃AuS₂ is unsymmetric, involving two Au-S bond distances of 2.76 Å and 2.94 Å. On the other hand, in β -Ag₃AuSe₂ two Au-Se bonds are of equal distance of 2.56 Å. The distance is much less than the sum of respective ionic radii (3.35 Å for Pauling's scale), which predicts substantial covalent character for the Au-Se bond. As seen in Table 1, the values of I.S. and Q.S. for β -Ag₃AuSe₂ are smaller than those for β -Ag₃AuS₂. This result suggests in general that the covalent character of the Au-Se bond is smaller than that of the Au-S bond, 7) contrary to the expectation based on the bond distance. conflict may be resolved by considering the differences in the bond nature between Se-Au-Se and S-Au-S. In the case of Au(I), the $5d_{Z}^{2}$, 6s, and $6p_{Z}$ atomic orbitals of gold are suitable for σ -bonding.⁸⁾ It is likely from the abnormally short distance of the Au-Se bonds that two 6s6p hybrid orbitals mixed with substantial $5d_{\rm Z^2}$ character are used for the bond The participation of the $5d_{\rm Z}^{2}$ orbital of gold to the σ -bonding leads to a decrease in the quadrupole splitting mainly attributable to $6p_Z$ populations, because of opposite contribution to the electric field On the other hand, the large I.S. value for β -Ag₃AuS₂ is considered to be due to the unsymmetry of the S-Au-S bond; the fraction of 6s-character is enhanced in the σ -bonding orbital from the viewpoint of The increase in 6s-character leads to a large I.S. value, because energy. the nuclear radius term $\Delta R/R$ is positive in sign for ^{197}Au . This work was partly supported by a Grant-in-Aid for Scientific Research (No. 02640480) from the Ministry of Education, Science and Culture. ## References - 1) T.J.M.Smit, E.Venema, J.Wiersma, and G.A.Wiegers, J. Solid State Chem., 2, 309 (1970). - 2) R.B.Graf, Am. Mineral., 53, 496 (1968). - 3) J.C.W.Folmer, P.Hofman, and G.A.Wiegers, J. Less-Common Metals, 48, 251 (1976). - 4) P.Messien and M.Baiwir, Bull. Soc. R. Sci. Liége, 35, 234 (1966). - 5) G.A.Wiegers, J. Less-Common Metals, 48, 269 (1976). - 6) P.Messien, M.Baiwir, and B.Tavernier, Bull. Soc. R. Sci. Liége, 35, 727 (1966). - 7) M.O.Faltens and D.A.Shirley, J. Chem. Phys., 53, 4249 (1970). - 8) D.Guenzburger and D.E.Ellis, Phys. Rev. B, 22, 4203 (1980). (Received October 20,1990)